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ABSTRACT

The development of an infrared (IR; specifically near 11mm) eye probability forecast scheme for tropical

cyclones is described. The scheme was developed from an eye detection algorithm that used a linear dis-

criminant analysis technique to determine the probability of an eye existing in any given IR image given

information about the storm center, motion, and latitude. Logistic regression is used for the model devel-

opment and predictors were selected from routine information about the current storm (e.g., current in-

tensity), forecast environmental factors (e.g., wind shear, oceanic heat content), and patterns/information

(e.g., convective organization, tropical cyclone size) extracted from the current IR image. Forecasts were

created for 6-, 12-, 18-, 24-, and 36-h forecast leads. Forecasts were developed using eye existence probabilities

fromNorthAtlantic tropical cyclone cases (1996–2014) and a combinedNorthAtlantic andNorth Pacific (i.e.,

Northern Hemisphere) sample. The performance of North Atlantic–based forecasts, tested using in-

dependent eastern Pacific tropical cyclone cases (1996–2014), shows that the forecasts are skillful versus

persistence at 12–36 h, and skillful versus climatology at 6–36 h. Examining the reliability and calibration of

those forecasts shows that calibration and reliability of the forecasts is good for 6–18 h, but forecasts become a

little overconfident at longer lead times. The forecasts also appear unbiased. The small differences between

the Atlantic and Northern Hemisphere formulations are discussed. Finally, and remarkably, there are in-

dications that smaller TCs are more prone to form eye features in all of the TC areas examined.

1. Introduction

The formation of an eye feature in tropical cyclones

(TCs) in visible and infrared (IR) imagery is one of the

more fascinating events to witness in real time. The

transition can occur intermittently, via banding, or

rather abruptly, and has distinct forecast implications.

Persistent eye formation, which occurs in IR imagery

when the TC first reaches ;79kt (1 kt 5 0.514ms21)

(Vigh et al. 2012), is important to both subjective

(Dvorak 1984) and objective (e.g., Olander and Velden

2007) TC intensity estimates. In fact, the formation of an

eye typically results in at least a 15-kt increase in in-

tensity, and if the eye becomes increasingly well de-

veloped, can require the Dvorak analysts to break

constraints to provide amore accurate intensity estimate

(Velden et al. 2006). It is important to note that eye

formation is often thought to be the beginning of more

rapid intensification and that eye formation typically

occurs in radar at intensities around 58kt (28ms21)

(Vigh et al. 2012 and references within). There is also

compelling evidence that the efficiency of tropical cy-

clones, defined as the ratio of injected heat energy to the

kinetic energy change of the symmetric vortex (Schubert

and Hack 1982), improves with vortex intensity (inertial

stability) and Coriolis parameter with the majority of the

increases in efficiency coming from intensification (Nolan

et al. 2007). In the same manner, the disintegration of an

eye feature is typically related to weakening and to both

structural changes, like extratropical transition [i.e., those

described by Evans andHart (2003)], and those caused by

poorer kinematic and thermodynamic environments. The

disintegration of the eye can also be related to rapid

weakening (cf. Wood and Ritchie 2015) if the TC is ini-

tially very intense and has a distinct eye.

While it is recognized that operational TC centers

do not typically forecast the formation of eye features, it

is also documented that there are robust relationshipsCorresponding author: John Knaff, john.knaff@noaa.gov
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between eye formation and rapid intensification

(e.g., Malkus 1958; Holliday and Thompson 1979;

Weatherford and Gray 1988; Willoughby 1990). Thus,

our thesis is that if one was able to anticipate eye be-

havior, such forecasts may ultimately be very helpful for

making short-term (#36h) TC intensity forecasts. These

forecasts could also be used in combination with the

existence of eye features in passive microwave imagery,

which often appears earlier than the IR eye feature

(Burton et al. 2010), and can be used to forecast rapid

intensification (Rozoff et al. 2015). These short-term

forecasts are also the time periods that have shown the

least improvement over the last several decades

(DeMaria et al. 2014) and making improvements in

forecasting rapid intensification is one of the highest

priorities at U.S. operational centers (OAR 2017). With

this premise in mind, the development of such forecasts

for the probability of existence of an eye feature in in-

frared imagery is the topic of this paper. The data and

methods are described and results are presented in the

next two sections, followed by an example, the devel-

opment of a Northern Hemisphere model, and a short

summary and discussion.

2. Data and methods

The developmental basis for forecasting TC eye

formation/dissipation comes from the output of an IR

imagery–based eye probability estimate or eye de-

tection algorithm (EDA) developed by DeMaria

(2016, hereafter D16), which is now briefly described.

Eye probabilities were estimated using linear and

quadratic discriminant analysis (LDA and QDA, re-

spectively). The training data for whether a scene had

an eye was based on routine Dvorak intensity fixes

(following Dvorak 1984), available from the Satellite

Analysis Branch (SAB) and the Tropical Forecast and

Analysis Branch (TAFB), that are archived in the da-

tabases of the Automated Tropical Cyclone Forecast

system (ATCF; Sampson and Schrader 2000) and the

CIRA tropical cyclone IR (;11mm) image archive.

The latter contains 4 km 3 4 km resolution images

collected from the global constellation of geostationary

satellites and is remapped onto a common Mercator

projection that has approximately 30-min temporal

resolution. Details of how that eye and no-eye infor-

mation is extracted from the individual Dvorak fixes

are described in the appendix. For this study and D16,

TAFB was used as the true eye/no-eye observation.

The IR-based inputs to the EDA are principle com-

ponents (PCs) of the 320 km 3 320 km storm-centered

IR imagery. Principle component analysis significantly

reduces the dimension of this problem and allows for the

use of a moderately sized developmental dataset. Ini-

tially, 25 PCs were examined, but their predictive ability

leveled off when 10 or more PCs were used. For this

reason, a total of 10 PCs with the highest magnitude in

the significance vector (i.e., those that contribute the

most toward improving the estimate) were used along

with four components that come from the best tracks,

including the current intensity, zonal storm motion,

meridional storm motion, and storm latitude (D16). It is

important to note that the best-track information is also

routinely available as part of the TC advisories and

forecasts. It is also worth mentioning that the largest

predictive contributions come from the PCs with ei-

genvectors that portrayed symmetric/eyelike patterns in

the IR imagery, which includes the first 5 of the 10 PCs

used, as shown in D16.

Testing and development of the EDA was conducted

using 4109 cases from 265 different Atlantic TCs during

1995–2013. All cases are 6 h or greater apart in time, and

991 (24%) were considered to have an eye by TAFB.

SAB fixes were not used for development, but eye

classifications from SAB and TAFB agreed 95% of the

time (D16). To evaluate the quality of the eye detection,

the data samples were randomly shuffled and parti-

tioned so that 70%of the data would be used for training

and 30% would be used for testing. This process was

performed 1000 times (D16).

The resulting algorithms allow for the estimation of

the probability of an eye existing in any storm-centered

image. Figure 1 shows an example time series of the

LDA andQDA versions of the EDA and corresponding

6-hourly IR imagery for east Pacific Hurricane Sandra

(2015), which was described as the latest forming east

Pacific major hurricane by Stewart (2016). This case was

chosen for its short best track and rather typical in-

tensification to major hurricane intensity and decay over

cooler waters. Sandra had a pinhole-eye feature

(0600 UTC 26 November), reached 130-kt intensity, and

was relatively short lived (Stewart 2016). It is clear the

LDA and QDA produce different results and disagree

primarily at the formation and disintegration times. In

the most basic sense this is because the QDA is more

sensitive to the image information and less sensitive to the

best-track information. In general, the QDA is a bit

noisier, fluctuating more rapidly between images, and

LDA ismore conservative. For our work here, we use the

LDA version of the EDA and henceforth EDA will refer

to the LDA version of the EDA, which produces the best

overall statistics that result in 90% of the cases being cor-

rectly predicted, Brier skill scores of 61% (climatology ;
12%), and Pierce skill scores of 66%; all of which

suggests that the EDA can detect IR eye features, can

outperform climatology, has skill in discriminating eye
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versus no-eye scenes, and is commonly less noisy fromone

image to another. It is however important to note that the

algorithm is rather conservative to rapid changes in the

eye and will not necessary detect (probability. 0.5) weak

or intermittent eye scenes, just like a conservative human

analyst. Full details of both of the EDAs are available

in D16.

Having a skillfulmethod to estimatewhether aTC image

contains an eye allows one to visualize and track eye de-

velopment anddecay. The existence of such a dataset allows

us to construct and verify simple statistical forecast

models to anticipate eye formation in the future. In

addition to the information in the EDA (providing the

dependent variables), we would like to incorporate in-

formation about the future environment and initial

conditions in the IR imagery. Information in the IR imagery

has been shown to be related to short-term changes in TC

intensity, as demonstrated byDeMaria et al. (2005), Kaplan

et al. (2010), and Kaplan et al. (2015), and TC structure

(Knaff et al. 2014, 2016; Kossin et al. 2007; Mueller et al.

2006), the latter also being related to intensification rates

(e.g., Carrasco et al. 2014). Several environmental condi-

tions are also known to be related to TC intensity changes

including vertical wind shear, midlevel moisture, oceanic

heat content, and sea surface temperatures, as has been

documented bymany statistical–dynamical methods for TC

intensity forecasting (DeMaria and Kaplan 1999; Knaff

et al. 2005; DeMaria et al. 2005; DeMaria 2009) and fore-

casting rapid intensity change (Kaplan and DeMaria 2003;

Kaplan et al. 2010, 2015).

In this work, a similar approach to rapid intensity in-

dices (e.g., Kaplan et al. 2015) is used, that is,

employing a combination of current TC conditions, en-

vironmental conditions, and information about the

current IR structure of the TC to forecast eye proba-

bilities. We however use the method of logistic re-

gression exclusively to provide probabilistic forecasts of

IR eye existence at 6, 12, 18, 24, and 36h.

Logistic regression is a regression model where the

dependent variable (DV) is categorical; in this case 1

indicates having an IR eye (pe) and 0 not having an IR

eye ( pn). Logistic regression is also a special case of the

generalized linear model where the natural log of the

odds ratio or logit of the categorical data is a linear

combination of independent predictors x1, . . . , xn with

intercept b0 and weights b1, . . . , bn, which are deter-

mined via the method of maximum likelihood as

ln

�
p
e

12 p
n

�
5b

o
1b

1
x
1
1⋯1 b

n
x
n
. (1)

To perform variable selection and the model fit, we

utilize Fortran 90 code written by and provided by

A. J. Miller (CSIRO 2017) that produces linear logistic

FIG. 1. (top) Comparison of the LDA andQDA versions of the EDA for east Pacific Hurricane

Sandra (2015), (bottom) along with daily IR images.
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models by iteratively reweighted least squares. The lo-

gistic regression model, while similar to linear re-

gression, is based on different assumptions about the

relationship between dependent and independent vari-

ables. There are two primary differences: 1) since the

dependent variable is binary, the conditional distribu-

tion is a Bernoulli distribution rather than a Gaussian

distribution, and 2) the predicted values are probabili-

ties of a particular outcome. Once fitted, the probability

of having an eye takes the form

p
e
5

1

[11 e2(bo1b1x11⋯1bnxn)]
. (2)

The measure of quality of fit is taken in terms of de-

viance, which is a generalization of the idea of using the

sum of squares of residuals in ordinary least squares to

cases where model fitting is achieved by maximum

likelihood. Deviance is defined as 22 times the log-

likelihood ratio of the fitted model compared to the full

(i.e., perfect) model. Given the generalization, one can

also define the percent deviance explained as 1 minus

the ratio of the fittedmodel deviance to the deviance of a

model containing only the intercept b0.

Environmental conditions used in this application

come from the Statistical Hurricane Intensity Prediction

Scheme (SHIPS; DeMaria and Kaplan 1999) develop-

ment dataset, which is described in NOAA (2016). A

number of forecast parameters were tested as potential

predictors in the logistic regression scheme, which are

listed and described in Table 1. Storm-centered IR im-

agery provides several initial conditions as potential

predictors to the model. Those initial conditions are also

listed and described in Table 1. Finally, best-track-based

parameters were also tested in this scheme following

previous research that suggested initial intensities and

recent intensity trends are important to intensification.

These too are listed and described in Table 1.

Several IR-based potential predictors are included in

testing the scheme. Here, we use ‘‘pixel counts’’ to de-

termine the percentage area colder than a threshold

temperature as a proxy for convective vigor. The pixel

TABLE 1. Potential predictors for logistic regression algorithms to predict the formation/demise of an IR eye at lead times of 6, 12, 18, 24,

and 36 h. Predictors include forecast parameters (environmental predictors) and initial conditions (IR predictors and best-track/advisory-

based predictors).

Acronym Description

Environmental predictors (time averaged from t 5 0 to time of the forecast)

SHRD 850- minus 200-hPa scalar wind speed difference (wind shear) calculated within a radius of 500 km

GSHR 850–200-hPa generalized wind shear calculated as the mass-weighted root-mean-square deviations of the winds from

the mass-weighted deep-layer mean winds times a factor of 4 calculated in a 200–800-km annulus (Knaff et al. 2005)

SST Sea surface temperatures at the center of the TC

OHC Oceanic heat content between the surface and the depth of the 268C isotherm (Shay et al. 2000 and references therein)

RH 850–500-hPa relative humidity calculated within a 200–800-km annulus

VT85 850-hPa tangential wind at 500 km from the TC center

IR predictors

EP Current eye probability based on LDA

C20 Percentage of IR pixels colder than 208C within a 50–200-km annulus

C30 Percentage of IR pixels colder than 308C within a 50–200-km annulus

C40 Percentage of IR pixels colder than 408C within a 50–200-km annulus

C50 Percentage of IR pixels colder than 508C within a 50–200-km annulus

IPC1 First principle component of the azimuthally averaged IR brightness temp at 0–600 km

IPC2 Second principle component of the azimuthally averaged IR brightness temp at 0–600 km

IPC3 Third principle component of the azimuthally averaged IR brightness temp at 0–600 km

IPC4 Fourth principle component of the azimuthally averaged IR brightness temp at 0–600 km

SDO Std dev of IR brightness temp at 100–300 km

SDI Std dev of IR brightness temp at 0–200 km

AVGO Avg IR brightness temp at 100–300 km

AVGI Avg IR brightness temp at 0–200 km

FR5 Deviation of IR-based TC size (R5; Knaff et al. 2014) from the climatological population as a function of TC intensity

(see Knaff et al. 2016)

Best-track/advisory-based predictors

VMAX Current TC intensity (t 5 0)

DV 12-h change in TC intensity

LAT Latitude

SPD Current storm translation speed
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counts were calculated in a central region (50–200km)

with thresholds of 2208, 2308, 2408, and 2508C. In a

similar effort to determine the spatial uniformity and

overall convective vigor, brightness temperature stan-

dard deviations and averages were calculated in an inner

area of 0–200km and an outer region of 100–300km.We

are also interested in depicting the convective structure

in terms of azimuthally averaged principle components.

These basically represent the radial wavenumbers 0, 1, 2,

and 3 as principle components 1, 2, 3, and 4. The prin-

ciple components have been shown to be related to the

wind field (Kossin et al. 2007; Knaff et al. 2016), the TC

size (Knaff et al. 2014), and future eyewall formation

(Kossin and Sitkowski 2009). Other authors (Carrasco

et al. 2014; Xu and Wang 2015) have suggested that the

intensification rate of cyclones is inversely related to TC

size, so our final IR predictor, FR5, provides a globally

homogeneous (independent of TC center) measure of

TC size that accounts for variations in storm intensity.

This is accomplished by calculating the IR-based TC size

(R5; Knaff et al. 2014) a function of the first two IR

principle components and the storm latitude and di-

viding that value by the intensity-based climatology of

R5, as described in Knaff et al. (2016).

A forward predictor selection strategy is used for

North Atlantic cases (1996–2014); adding only pre-

dictors that significantly reduce the model errors at the

99% level and to minimize the residual sum of squares

while also minimizing the number of independent

variables used in each model. Each potential predictor

was standardized by subtracting the sample mean and

dividing by the sample standard deviation, which al-

lows for examination of both the sign and the relative

contribution of each predictor. While not formally

using an Akaike information criterion (Akaike 1974),

this ad hoc methodology has the same aim (e.g., pro-

ducing the best model with the least number of pre-

dictors). The chi-squared-based probability is also used

to evaluate the model fit. For our work described in the

next section, the North Atlantic EDA probabilities

were used as the dependent variable for model fitting

and the east Pacific EDA probabilities (1996–2014)

were held out for independent testing of the resulting

model. These two samples plus the 2005–14 sample

from the western North Pacific (using SAB’s PCN co-

des) are combined to create Northern Hemisphere

model versions.

3. Resulting models and verification

The resulting models for forecasting eye probabilities

at 6-, 12-, 18-, 24-, and 36-h lead times had between 5 and

10 predictors. These explain 80%, 66%, 52%, and 41%

of the deviance at 6-, 12-, 24-, and 36-h lead times. The

18-h forecast resulted in two valid and equally well fit

models (18_a and 18_b). The former explains 55%of the

deviance with 5 predictors while the latter explains 60%

of the deviance using 10 predictors. The key differences

are the use of initial eye probabilities in the 18_a model

and the use of current TC intensity (VMAX; see Table 1

for descriptions of the predictors) and several IR-based

predictors in the 18_b model, so there is some in-

dependence in the calculated response. Furthermore, po-

tential for overstating the fit or ‘‘artificial skill’’ in regression

models increases as the number of predictors increases

(Mielke et al. 1996). Table 2 provides a list of the predictors

chosen at the various forecasts leads with their means and

standard deviations used for the standardization. Various

combinations were used, but for the sake of brevity, it is

best to list all the predictors used.

A discussion of individual model combinations will

follow. In general, vertical wind shear, the 500-km tan-

gential winds at 850 hPa, and the oceanic heat content

proved to be important predictors from the storm en-

vironment. These results are similar to those of envi-

ronmental predictors used in the rapid intensification

index (Kaplan and DeMaria 2003). Equally important is

the state of the convection. Information about the cur-

rent convective structure came from several predictors.

It is not surprising that the current eye probability was

an important predictor. The brightness temperature

threshold of 2508C provided the best measure of con-

vective vigor and the standard deviation of brightness

temperatures in the 100–300-km annulus was also most

predictive, suggesting rather deep and spatially uniform

convection is important for future eye formation at

all times. The radial wavenumbers 2 and 3 (IPC3 and

IPC4), and the TC size also appear important at some

leads. It is also not surprising that current intensity and

recent trends are also important, as was the case in the

TABLE 2. Predictors (independent variables) that are used in the

probabilistic forecasts of IR eye probabilities, their means, stan-

dard deviations, and at which lead times they are used for model

development in the North Atlantic sample.

Predictor Mean Std dev Forecast lead times

SHRD 17.927 9.768 6, 12, 18_a, 18_b, 24, 36

OHC 31.579 31.115 18_b, 24, 36

VT85 7.335 3.966 18_b, 24, 36

EP 0.124 0.267 6, 12, 18_a

C50 0.376 0.268 6, 12, 18_a,18_b, 24, 36

IPC3 0.042 1.005 6, 12, 18_b

IPC4 0.004 0.985 18_b

SDO 21.688 6.645 12, 18_a, 18_b, 24, 36

FR5 1.048 0.220 18_b, 24, 36

VMAX 55.296 24.798 18_b, 24, 36

DV 2.094 9.059 6, 12, 18_a,18_b, 24, 36
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rapid intensification indices run in operations (e.g.,

Kaplan et al. 2015).

In all, six models were developed. There are two

competitive and different models available at the 18-h

lead; for our verification results, we will average the

results of these two forecasts to produce the eye prob-

abilities at 18 h following the concept that combining

different and less dependent estimates and forecasts to

form an average has long been shown to reduce un-

certainty and errors (see, e.g., Student 1908; Bates and

Granger 1969; Goerss 2000; Sampson et al. 2008;

Sampson and Knaff 2015). Figure 2 shows the normal-

ized regression coefficients and constants as in Eq. (2)

used in each forecast model. The magnitude and sign of

each predictor provides information on the relative

importance of the predictor and its impact on the

probability forecast. Keep in mind that in Eq. (2), the

largest probabilities result when the linear combination

b0 1 b1x1 1 b2x2 1⋯1 bnxn equals zero, and since the

constants are all negative, the linear relationship of the

normalized regression coefficients is the same as their

sign implies. That is, negative coefficients imply an in-

verse relationship with eye probabilities.

The resulting forecast equations are fairly heavily

weighted to information in the IR imagery. This may

be an advantage at times in anticipating rapid in-

tensification events, as the current operational versions

of the rapid intensification index (RII) are more

heavily weighted to best-track information and envi-

ronmental conditions. Several expected relationships

also appear, including that all forecasts use some

measure of current intensity and the recent intensity

trends, vertical wind shear, and measures of convective

vigor are statistically important at all lead times.

There are some interesting features also resulting

from these statistics. The first is that for the 6- and 12-h

forecasts, the persistence of eye probabilities is the most

important factor. At the 18-h lead time the persistence

of the current eye conditions becomes noticeably less

important, and the current intensity becomes important

enough to be selected as a predictor. It is also thought

provoking that the initial convective vigor and spatial

consistency (C50 and SDO) provide about the same

amount of information at all leads, save for the 6-h

forecast where SDO is not selected. The IPC3, which has

been linked to future secondary eyewall formation

(Kossin and Sitkowski 2009), is important for the earlier

lead times, suggesting that this pattern is likely pro-

viding information about the possibility of a disruption/

decrease in the eye probabilities at these leads. The

effect of ocean heat content (OHC) seems to be most

pronounced, influencing longer lead times, which is

consistent with other statistical dynamical intensity

forecasting efforts (e.g., DeMaria et al. 2005). Finally,

the two predictors related to TC size, the 850-hPa tan-

gential winds (VT85), and the IR-based TC size (FR5)

also become important at and beyond the 18-h lead

forecast times.

To validate the forecast schemes, we use the EDA

results from the east Pacific TC basin as independent

data and then compare the probabilistic forecast with

two baseline forecasts. The first is climatology, which,

depending on lead time, runs between 11% and 14%.

The second is a simple persistence of the current eye

probabilities. From this information we construct Brier

skill scores (BSSs;Wilks 2006), which provide ameasure

of skill based on the root-mean-square errors of the

forecast models versus our two baseline forecasts. We

FIG. 2. Graphical depiction of the constants and standardized regression coefficients for the

forecasts of eye probability at lead times of 6, 12, 18, 24, and 36 h based on the North Atlantic

developmental dataset. Note that 18 h has two competitive forecast equations and both are

shown here. The constants correspond to b0 and the coefficients correspond to b1, b2, . . . , bn in

the logistic regression, as expressed in Eq. (2).
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use the east Pacific data to demonstrate that the method

works well even in a non-basin-specific and truly in-

dependent sense. In doing so, we recognize that the east

Pacific basin generally has smaller storms (Knaff et al.

2014) and more favorable environmental conditions

(Kaplan et al. 2010, 2015). The ultimate goal, a set of

Northern Hemisphere coefficients (i.e., North Atlantic

and North Pacific), is presented and discussed in section

5. The BSSs for the six forecast models are shown in

Table 3. The 6-h forecast is the only time period with a

negative BSS when the baseline forecast is the persis-

tence of current conditions (i.e., worse than persistence

at 6-h lead times). The rest of the forecast models show

significant improvement over the two baseline forecasts

with peak skill versus climatology at the 12–18-h lead

times. It is noteworthy that as lead time increases, the

persistence baseline forecast becomes less reliable and/or

useful, so BSS versus persistence generally increases with

forecast lead time.

BSS only provides a measure of relative skill versus a

baseline. To provide information on the calibration of

the forecasts, reliability diagrams (calibration and em-

bedded refinement distributions) are also constructed,

as shown in Fig. 3. These reliability diagrams show how

the forecasts are calibrated. Generally, the shorter leads

have better calibration (closer to the 1:1 line), but as we

go to longer leads the forecast calibration deteriorates,

and the forecasts become more overconfident (more

horizontal). The forecasts also have relatively small

biases (i.e., the lines are not systematically above or

below the 1:1 line). The refinement distributions (note

the logarithmic scale) indicate that the forecasts have

high confidence (being well distributed among the po-

tential outcomes with the largest cases at the endpoints

of the distribution).

These combined results suggest that the algorithms

developed to forecast IR eye probabilities usingAtlantic

TC cases performwell and are skillful versus the baseline

forecasts of persistence and climatology. Furthermore,

the forecasts appear to be well calibrated versus past

validation of probabilistic intensity changes (see Kaplan

et al. 2010, 2015) and show high confidence in their dis-

tribution. Finally, both the skill (i.e., positive BSSs) and

reliability (relative to 1:1) are greatest at the 12–24-h

forecast leads and might thus be complementary to other

tools that forecast rapid TC structure and intensity

changes.

4. Hurricane Matthew (2016)

We now present an example of forecasts for Hurricane

Matthew (2016). Todemonstrate thenatureof the forecasts,

we show them made every other day at 0000 UTC along

with the observed eye probability for brevity (Fig. 4). All

the forecasts for Matthew are available online (http://

rammb.cira.colostate.edu/products/tc_realtime/archive.

asp?product5eyepfcst&storm_identifier5AL142016).

HurricaneMatthew demonstrated a rapid eye formation

around 0600 UTC 30 September (red line), which was

followed by a period of rapid intensification, intensifying

from 85 to 140 kt in the next 24 h based on the working

best track. The forecast made at 0000 UTC 29 Septem-

ber did not forecast this eye formation event, with

probabilities only slightly exceeding climatology only

at the 24- and 36-h lead times. This echoes the NHC

forecast discussion at that time, which states the

following:

‘‘Matthew is forecast to move over warm waters and
relatively low shear during the next few days, and these
conditions should lead to gradual strengthening. There
is a possibility, however, that Matthew encounters some
westerly shear in the central Caribbean well south of
Haiti in a day or two. This is an area climatologically
unfavorable for storms to intensify, and Matthew could
reduce its rate of strengthening there. After that, most of
the models show a more conducive upper-level envi-
ronment, and Matthew could intensify at a faster rate.’’

Forecasts after that date, shown in Fig. 4, agreemuch better

with the observations even predicting a bit of eye un-

certainty that occurred late on 5 October and early on

6 October. The next to last forecast also properly forecasts

the demise of the eye as Matthew weakened. Overall, such

cases are encouraging. Other cases are available online

(http://rammb.cira.colostate.edu/products/tc_realtime/) for

2016 TCs starting in the middle of July.

5. Northern Hemisphere coefficients

Since eye formation is a rare event, we wanted

to examine the largest dataset we could assemble and

develop similar logistic regression models for eye

TABLE 3. BSSs of the eye probability forecast models at various

lead times based on baseline forecasts of persistence and clima-

tology, which are based on independent forecasts of east Pacific eye

formation during 1996–2014. Climatology results are 11.6%,

11.9%, 12.2%, 12.7%, and 13.9% for 6-, 12-, 18-, 24-, and 36-h

forecasts, respectively. The 18-h forecasts and related statistics are

also based on an equallyweighted consensus of the two competitive

models developed for this lead time.

Model lead time

(No. of cases)

BSS

(persistence)

BSS

(climatology)

6 h (n 5 5560) 20.14 0.88

12 h (n 5 5450) 0.35 0.80

18 h (n 5 5298) 0.47 0.71

24 h (n 5 5140) 0.47 0.58

36 h (n 5 4563) 0.50 0.63
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probability. This allows us to better examine the

stability of the solutions found in the North Atlantic

and to develop a model that while not optimized

by basin will work well across the entire Northern

Hemisphere.

The dataset is compiled using SHIPS developmental

data and fixes for the years 1989–2014 in the Atlantic

and eastern North Pacific and for the years 2005–14 in

the western North Pacific. The western North Pacific

dataset was limited by the existence of hourly IR data

prior to 2005. Fortunately, the sample consisted of

nearly equal numbers of cases in each basin with 4673,

4962, and 4636 cases in the Atlantic, east Pacific, and

west Pacific basins, respectively.

Models were constructed in a similar manner and

contained the same predictors as the North Atlantic

models, except for the 18_b model, where OHC and

SDO were dropped and the contributions of the IPC3

FIG. 3. Reliability and refinement distributions as-

sociated with the independent forecasts of eye proba-

bility in the eastern North Pacific. The numbers of

cases are listed in Table 3.
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and IPC4 are very small. These dependent models

explained 53%, 50%, 50%, 50%, 50%, and 43% of the

deviance at 6, 12, 18_a, 18_b, 24, and 36 h, or less than in

the North Atlantic. The resulting normalized weights

are shown in Fig. 5. Comparing Fig. 5 with Fig. 2, one can

see that the predictive influence of VWS, OHC, and C50

generally increases; the influence of EP, SDO, PC3,

PC4, and VMAX decreases; and the influences of

VT850 and FR5 remain very similar. Table 4 shows the

statistics associated with the predictors in this much

larger sample, where VWS is generally a little smaller,

and OHC, VT850, and C50 are generally a little larger.

The model predictor weights, however, are more similar

than different when compared to the Atlantic models.

FIG. 4. The 0000 UTC forecasts made every 2 days for Hurricane Matthew (2016) starting on 29 Sep and ending on 9 Oct. The red line

and points are the real-time eye probability estimates, and the blue squares are the forecasts at 6-, 12-, 18-, 24-, and 36-h lead times.

Forecasts were created in real time with SHIPS large-scale diagnostic files obtained from NHC and real-time GOES-East data.

DECEMBER 2017 KNAFF AND DEMAR IA 2111



Specifically, low VWS (,;15kt), higher OHC

(.;35kJ cm22), TCs with central cloud cover that is

cold and symmetric, and smaller, more intense, and in-

tensifying TCs are more prone to eye formation during

the next 36 h.

6. Summary and discussion

This manuscript describes the development of an

IR eye probability forecast scheme. The scheme was

developed using an eye detection algorithm that

employed a linear discriminant analysis technique to

determine the probability of an eye existing in any given

IR image given information about the storm center,

motion, and latitude. The methodology used is logistic

regression, where predictors were selected from routine

information about the current storm, forecast environ-

mental factors, and patterns and information extracted

from the current IR image. Forecasts were created for

6-, 12-, 18-, 24-, and 36-h forecast leads using separate

Atlantic and Northern Hemisphere developmental

datasets.

The independent performance of the Atlantic basin–

basedmodel forecasts tested on independent east Pacific

cases was skillful versus persistence at 12–36h and

skillful versus climatology at 6–36h (Table 3). The cal-

ibration and reliability of the forecasts is quite good for

6–18h, but forecasts become more overconfident (more

horizontal with respect to the 1:1 line) at longer lead

times (Fig. 3). The forecasts also appear to be unbiased

(not systematically above or below the 1:1 line).

Northern Hemisphere models were constructed using

similarly sized samples from the North Atlantic, east

Pacific, and western North Pacific, and showed that

having a similar set of predictors is important for an-

ticipating IR eye formation during the next 6–36h in the

multibasin sample. While is not surprising that low-

VWS, high-OHC, anomalously cold, and symmetrically

deep convection near the center of TCs, as well as storms

that are rather intense and have been intensifying, are

more likely to form eyes in the near future, our statistics

also suggest that smaller TCs are also more likely to

produce eyes than larger TCs. This finding agrees with

the observational results of Carrasco et al. (2014) and

Xu andWang (2015), that future intensification rates are

related to TC size. These results also seem consistent

with idealized modeling studies (e.g., Schubert et al.

2016), where ‘‘the smaller vortices are better precondi-

tioned for rapid intensification.’’ Collectively, all of

these results suggest that more effort in assessing the

initial TC wind field and assimilating it into both statis-

tical and dynamical models may lead to improvements

in TC intensity change forecasts.

While it is understood that no operational agency

predicts the formation of the TC eye, the formation of an

eye represents an important structural stage where fur-

ther intensification is both likely and rapid intensification

more likely. In fact, the formation of an eye in IR im-

agery often results in at least a 15-kt increase in the

FIG. 5. As in Fig. 2, but for the Northern Hemisphere sample.

TABLE 4. Predictors (independent variables) that are used in the

probabilistic forecasting of IR eye probabilities, their means,

standard deviations, and at which lead times they are used for

model development in the Northern Hemisphere sample.

Predictor Mean Std dev Forecast lead times

SHRD 15.33 8.83 6, 12, 18_a, 18_b, 24, 36

OHC 34.98 32.53 24, 36

VT85 8.14 4.50 18_b, 24, 36

EP 0.150 0.299 6, 12, 18_a

C50 0.468 0.289 6, 12, 18_a, 18_b, 24, 36

IPC3 20.089 1.022 6, 12, 18_b

IPC4 0.160 1.078 18_b

SDO 20.091 6.932 12, 18_a, 24, 36

FR5 1.021 0.254 18_b, 24, 36

VMAX 57.210 28.016 18_b, 24, 36

DV 2.184 10.204 6, 12, 18_a, 18_b, 24, 36
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intensity estimate (Dvorak 1984). The disintegration of

the IR eye also indicates abrupt structural changes and is

typically associated with weakening. These forecasts

were also created for the latter half of 2016 and were

made publicly available in the hopes that they would

prove useful to operational forecasters. Such forecasts

may also be useful when combined with other intensity

change guidance as well as observed eyewall structure

FIG. A1. A 30-h sequence of GOES-East infrared images showing the development of

Hurricane Patricia (2015) in the east Pacific. The date, time, and TAFB-based intensity and

PCN estimates are provided in the top left of each panel. Images are provided in a Mercator

projection and a light magenta circle of 200-km radius is provided on each image to

provide scale.
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changes found in microwave imagery, where eye fea-

tures typically show up when winds are around 58 kt,

which is when aircraft-based radar would typically also

depict an eye (Vigh et al. 2012).

Future work may include the development of eye

probability forecasts using the QDA version of the

EDA, the use of other statistical methods to make such

forecasts, and the development of similar techniques for

the Southern Hemisphere. We will also investigate if

such forecasts could add to other guidance to predict

rapid intensification events. Finally, we expect the next-

generation Geostationary Operational Environmental

Satellites will provide additional information leading to

improvements of this and other techniques designed to

forecast TC intensity and structure change.
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APPENDIX

Extracting Tropical Cyclone Eye Existence
Information from Routine Dvorak Fixes

Tropical cyclone position and intensity estimates

(or fixes) are routinely made by several U.S. weather

agencies using the Dvorak (1984) technique. For our

work we used the 6-hourly fixes from SAB, which is part

of the National Environmental and Satellite Data and

Information Service’s (NESDIS) Satellite Services Di-

vision, and TAFB, which is part of theNHC. These fixes,

which also provide the IR image time and the satellite,

were saved in the databases of the ATCF, whose fix

formats are described in NRLMRY (2016). Part of each

subjective Dvorak fix (DVTS) contains information

about the position code number (PCN) and text com-

ments. The PCN is the primary source of eye in-

formation and while the documentation suggested this

information was deprecated, U.S. agencies still provide

this information (B. Strahl and M. Turk 2017, personal

communication). If the PCN was coded as 1 (eye/

geography) or 2 (eye/ephemeris), then an eye existed

in the imagery. In addition to the PCN code certain text

phases in the comments were also used to determine

which images have eyes: ‘‘EYE,’’ ‘‘eye,’’ ‘‘EMB,’’

‘‘emb,’’ ’’BND,’’ ‘‘bnd,’’ ‘‘RAG,’’ and ‘‘rag.’’ We also

partitioned eye cases into banded, ragged, and embed-

ded features, though that information was not utilized in

this study. More than 98% of the cases were classified by

the PCN and then subclassified by the text information.

After manually examining the imagery associated with

this subjective, and possibly deprecated, information, it

became obvious that the Dvorak fix was providing ad-

equate eye classification for developing more objective

techniques. Cases with intensities less than 34kt were

also excluded from the dataset. To provide the reader a

bit more information, an example of six consecutive

images along with their TAFB-based intensity estimates

and PCNs are shown for Hurricane Patricia [2015;

Kimberlain et al. (2016)] in Fig. A1. This sequence of

images shows that a rapidly intensifying TC, which goes

from a poorly defined system to a distinct eye in 30h

and has what appears to be a ragged eye at 0545

UTC 22 October and a pinhole eye 6 h later. Notice how

the PCN corresponds to what appears to be an eye

(warm spot) in the IR imagery. It is noteworthy that

SAB did not classify the ragged-eye scene as having an

eye at 0545 UTC 22 October, but both agencies agree

on a pinhole eye at 1145 UTC 22 October.
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